TRADITIONAL AND FIRE-RELATED SILVICULTURAL TECHNIQUES TO REGENERATE OAK

RESULTS
FROM NC SITE
OF "THE
REGIONAL
OAK STUDY"

BACKGROUND

- Difficulty in regenerating oak has been identified by many resource practitioners as a key land management issue that spans across private, state, and federal land
- Oak regeneration failure, oak decline events, and altered disturbance regimes have resulted in decreased oak throughout the Central Hardwood Region (Fei et al., 2011)
- Problems associated with the regeneration of mixed species stands – oaks, in particular, are not new
- On mesic sites in the southern Appalachian, stands originating prior to 1930 tend to be of mixed-species composition (oak) while stands originating after 1930 tend to be dominated by yellow-poplar and red (or sugar) maple (Lorimer, 1983)

BACKGROUND

- Securing adequate oak regeneration is not problematic across the landscape
 - Regeneration is more problematic on higher than lower quality sites
- Differences in regeneration potential, competition, and site quality across the Central Hardwood Region impedes the development of techniques and guidelines for sustaining oak as a major component of upland ecosystems
- Given the ongoing oak regeneration problem and the high ecological and economic value of oak across the Central Hardwood Region, the NCWRC and BCEF agreed to partner on a study focusing on oak regeneration in the southern Appalachians
- The problems regenerating oak throughout the Central Hardwoods coupled with silvicultural expertise within SRS and NRS presented an opportunity to expand our research to answer questions on regional basis

THE REGIONAL OAK STUDY: A COOPERATIVE EFFORT

Figure from Fei et al., (2011)

- NC: USFS-SRS, NCWRC, NC State, and University of Texas-San Antonio
- TN: USFS-SRS, Stevenson Land Company, and Alabama A&M University
- MO: USFS-NRS, USFS-Mark Twain NF, and University of Missouri

THE REGIONAL OAK STUDY: A COOPERATIVE EFFORT

- Ecosystem response to 3 (plus control) recommended but not widely tested treatments that alter light and hardwood competition to enhance oak regeneration
- Across 3 physiographic regions of the Central Hardwood Region
 - 1. Southern Blue Ridge Mountains mesic, high quality
 - 2. Cumberland Plateau submesic subxeric, intermediate quality
 - 3. Ozark Highlands xeric, lower quality

TREATMENTS

- 1. Control
- 2. Oak Shelterwood (Loftis 1990)
- 3. Shelterwood/Burn (Brose et al., 1999)
- 4. Repeated Rx fire

ECOSYSTEM COMPONENTS OF INTEREST

- All locations will address:
 - Structure and composition of the forest overstory
 - Regeneration dynamics of oak and other commercial and noncommercial tree species
 - Understory plant diversity
 - Surface fuel loading
- Some locations will address:
 - Wildlife habitat
 - Seed bank
 - Bats and small mammals
 - Reptiles and amphibians
 - Insect abundance and diversity
 - Breeding birds
 - Artificial oak regeneration

NC EXPERIMENTAL DESIGN

- 16 5 ha (~12 acre) units
- Mature, mixed-hardwood forest stands, with oak/hickory comprising ~56% of BA
- Site index (oak₅₀) varies
 b/t 76 ft (23.1 m) and
 100 ft (30.5 m)

DATA COLLECTION

TREATMENT STATUS

- Oak shelterwood
 - All four reps are 6 yrs post herbicide trt
- Shelterwood/burn (Brose)
 - Two units are 5 yrs post-harvest

■ Two units are 4 yrs post-harvest Fall, 2014

- Prescribed fire only
 - Two units are 5 yrs post 1st of 3 planned Rx fires
 - Will (hopefully) receive the 2nd of 3 planned fires in the dormant season, 2014-2015

(Hopefully) all four units will be burned

Two units are 1 yr post the 2nd of 3 planned Rx fires

1ST OF 3 PLANNED PRESCRIBED FIRES (5YR

RETURN INTERVAL)

- Dormant season fires (2/24/2009 & 4/1/2010)
 - Cool backing fires (short strip lighting and flanking strip lighting)
 - 10hr: 9 and 11%
 - RH: 20 and 40%
 - Wind speed: <7 mph</p>
- Scorch height
 - Mean: 2.0 ft
 - Min: 0 ft
 - Max: 30.8 ft
- Litter consumption
 - Pre-fire: 2.2 in
 - Post-fire: 0.6 in

Maximum temperature (dF)

2ND OF 3 PLANNED PRESCRIBED FIRES

(5YR RETURN INTERVAL)

- Dormant season fire (4/2/2014)
 - Cool backing fires (short strip lighting and flanking strip lighting)
 - **10hr:** 6 8%
 - RH: 20 37%
 - Wind speed: 3 8 mph
- Scorch height
 - Mean: 4.6 ft
 - Min: 0 ft
 - Max: 49.9 ft
- Litter consumption
 - Pre-fire: 2.3 in
 - Post-fire: 0.1 in

FUELS

VEGETATION RESPONSE: OVERSTORY/MIDSTORY LAYERS

STRUCTURE - BASAL AREA

STRUCTURE - TREES/ACRE

STRUCTURE - TREE SIZE

VEGETATION RESPONSE: REGENERATION LAYER

SPECIES GROUPS

1. Canopy

- sweet birch, fraser magnolia, cucumber, white ash, basswood,
 black walnut, black locust, buckeye, yellow birch
- 2. Hickory
 - pignut, mockernut, bitternut, red hickory
- 3. Midstory
 - dogwood, sourwood, silverbell, striped maple, beech, serviceberry, ilex spp., musclewood, ironwood, American chestnut
- 4. Maple
 - red and sugar maple
- 5. Oak
 - northern red oak, southern red oak, black oak, scarlet oak, chestnut oak, white oak
- 6. Yellow-poplar

CONTROL

OAK SHELTERWOOD

RX FIRE

SHELTERWOOD/BURN

POPULATION DYNAMICS - SURVIVAL

POPULATION DYNAMICS – HEIGHT GROWTH

POPULATION DYNAMICS - BASAL DIAMETER GROWTH

WRAP-UP

CONCLUSIONS

- Conclusions regarding the efficacy of treatments cannot be made at this time - treatments have not been fully implemented
 - Unfortunately, ecological and forestry-related research (silviculture, in particular) is a long-term endeavor
 - Applicable results often requiring 10+ years of data collection

Purposeful burning by Native Peoples

European settlement land clearing for pasture & agriculture, continued use of fire

Fire suppression

Structure & composition Silvicultural

systems

Domestic grazing

Wood

utilization

Photo: Southern Appalachian brook trout foundation

associated with subsistence living Source: American Memory online photographic collection,

Library of Congress

ROS LITERATURE

- 1. Keyser, T.L. T. Roof, J. Adams, D. Simon, and G. Warburton. 2012. Effects of prescribed fire on the buried seed bank in mixed-hardwood forests of the southern Appalachian Mountains. Southeastern Naturalist 11(4): 669-688.
- 2. Greenberg, G.H., Keyser, T.L., Zarnoch, S.J., Connor, K., Warburton, G., and Simon, D.M. 2012. Acorn viability following prescribed fire in upland hardwood forests. Forest Ecology and Management 275: 79-86.
- 3. Greenberg, C.H., K.E. Franzreb, T.L. Keyser, S.J. Zarnoch, D.M. Simon, and G.S. Warburton. In press. Short-term response of breeding birds to oak regeneration treatments in upland hardwood forest. Natural Areas Journal. *In Press.*
- 4. Raybuck, A.L., C.E. Moorman, C.H. Greenberg, C.S. DePerno, K. Gross, D.M. Simon, G.S. Warburton. 2012. Short-term response of small mammals following oak regeneration silviculture treatments. For. Ecol. and Manage. 274:10-16.
- 5. Raybuck, A. 2011. Short-term response of small mammal and *Plethodon* salamanders following oak regeneration silviculture treatments. MS Thesis, North Carolina State University. 54pp.
- 6. Cantrell A.W., Y. Wang, C.J. Schweitzer, and C.H. Greenberg. 2013. Short term response of herpetofauna to oak regeneration treatments on the mid-Cumberland Plateau of southern Tennessee. For. Ecol. and Manage. 295: 239-247.
- 7. Cantrell, A.; Wang, Y.; Schweitzer, C.J.; Greenberg, C. 2012. Herpetofaunal and small mammal response to oak-regenerating silviculture practices in the mid-Cumberland Plateau of Southern Tennessee. In Butnor, J.R., ed. 2012. Proceedings, 16th Biennial Southern Silvicultural Conference; 2011; February 15-17, 2011, Charleston, South Carolina. e-Gen. Tech. Rep. SRS-156. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station: 47-52.
- 8. Cantrell, A. 2011. Herpetofaunal and small response to oak regeneration treatments on the mid-Cumberland Plateau of southern Tennessee. MS Thesis, Alabama A&M University, Normal, AL. 127pp.
- 9. Kabrick, J.M., J.L. Villwock, D.C. Dey, T.L. Keyser, and D.R. Larsen. pending. Modeling and Mapping Oak Advance Reproduction Density Using Soil and Site Variables. Forest Science. *In Press.*
- 10. Villwock, Jason L.; Kabrick, John M.; McNab, W. Henry; Dey, Daniel C. 2011. Landform and terrain shape indices are related to oak site index in the Missouri Ozarks. In: Fei, Songlin; Lhotka, John M.; Stringer, Jeffrey W.; Gottschalk, Kurt W.; Miller, Gary W., eds. Proceedings, 17th central hardwood forest conference; 2010 April 5-7; Lexington, KY; Gen. Tech. Rep. NRS-P-78. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station: 197-207.
- 11. Villwock, J.L. 2011. Factors influencing upland oak advance reproduction in the Missouri Ozarks. MS Thesis, University of Missouri. 61 p.

QUESTIONS?????????